
ESP
Evolution-based
Simulation for
Placement optimization

(hash-CB-181041) ESP: E V C L U I I C L - E A S E D
2 X R U L A I I I C I FOB E L I I C € B E L I CEIIkIZAlZOB
(I l l i n o i s U n i v .) 12 F A v a i l : EIIlS

N87-7 0458

Unclas
00/61 0079401

.." ~Cupn-MrurcCeC ALuLg
, I

4 - '
L ,

Aiticvircj Banerjea

Computer Systems Group
Coordinated Science Laboratory

University of Illinois at Urbana4hampaign
1101 W. Springfield Av.

Urbana. IL-61801

(217) 3336564

In the past, several heuristic algorithms have been proposed for optimally placing a number of
modules such t h h the total interconnect wire length is minimized. A disadvantage of using those
heuristics is their susceptibility to getting stuck at locally optimal solutions. Recently, the simu-
lated annealing (SA) technique has been shown to be immensfAy successful in achieving globally
near-optimal solutions. The main d m u l t y of any SA algori-a is the tremendous computation
time required to solve it. In this paper. we propose a new heuristic algorithm for placing modules.
It is based on the analogy of finding the optimally suited m d c a t i o n of an initial system in
VLSI-design and in biological environments. The biological solution is the evolution from one gen-
eration to the next one by eliminating ill-suited designs and keeping a set of near-optimal ones.
Nature has a way of preventing the development of species from getting stuck at local optima by
the important concept of mutation. Mutation can be d&ed as a pseudo-random process which
alters the characteristics of the design in an unpredictable way. The altered design is again sub-
jected to the evolutionary process which determines its survival. The main goal of our work was
to adapt the power of evolution and mutation. and use it for engineering purposes like the problem
of placing equal-sized modules in a rectangular grid which is described in this paper. The algo-
rithm has been implemented in a PASCAL program. and has been tested on a wide variety of exam-
ples. Some typical performance results are discussed. The algorithm that is described in the paper
is extremely fast. simple and &ciait.

Acknowledgment: This research has been supported by the National Am-aauties and Space Administration under contract
NASA NAG1-613.

All communications should be UtdnSJed to the second author.

1

L INTBODUCI'ION

The placement problem for N modules is known to be NP-complete and therefore the computation

of an exact solution for more than a few modules is not feasible. Several heuristics for module

placement based on iterative improvement and min-cut partitioning have been proposed in the past

[l. 21. Many of those algorithms cannot substantially overcome the problem of getting trapped at

local minima since they are purely of greedy nature. Recently, a general combinatorial optimiza-

tion technique called Simulated Annealing has ban applied to solve the placement problem l3.41.

It has been theoretically proved that the simulated annealing algorithm converges to an optimum

solution and is able to produce near-optimum results of high quality given enough time to reach

equilibrium. However, the simulated annealing algorithm has several undesirable features. most

importantly. the need for a Wtmnperature schedule and its immense CPU time requirements [41.

The new algorithm proposed in this paper is based upon the analogy of hding an optimally suited

modikation of an initial placement to modifications in biological environments. The biological

solution is the evolution from one generation to the next one by eliminating ill-suited designs and

keeping a set of near+ptimal ones. Nature has a way of preventing the development of species

from getzing stuck at local optima by the inportant concept of mutation. Mutation can be defined

as a pseudo-random process which alters the characteristics of the design in an unpredictable way.

The altered design is again subjected to the evolutionary ptocess which determines its survival.

The main goal of our work was to adapt the power of evolution and mutation to use it for

engineerhig purposes like the problem of placing equal4zed modules in a rectangular grid as

described in this paper.

The major aspects of this work are in:

(1) Adapting the evolution idea to the placement problem:

(2) Implementing the algorithm in a PASCAL program;

(3) Evaluating the algorithm performance.

a

2

II. "HE EVOLUTION-BASED ALGORITHM

The current version of the algorithm is designed for placement of equalsized square modules in a

rectangular grid. The main idea is to show that this totally new concept is capable of solving

VLSI-design problems in a very &cient way. The underlying concept. however, is not restricted in

any way to the discussed application and future work will include enhanced capabilities as well as

adaptions to different problems. A main design aspect was to make fuli use of the algorithm's

inherent simplicity in order to avoid time-consuming computation. Although the current version

heavily uses floating point numbers. this is only done to facilitate the code and will be replaced by

purely integer computations in future versions so that a signiscant speed-up can still be expected.

Nonetheless, the current version proves to be very fast, as will be shown later.

A basic concept used in the evolution-based algorithm is the establishment of a means of computing

the goodness of the placement of an individual module relative to the placement of other modules.

In order to simplify the explanation of this concept. we need to d&ne the following terms:

N = numberofmodules

T(j) = normalized theoretically optimal placement value of module j

R(j) = current normahzed ' real placement value of module j

Let us consider the placement of two modules. We assume that the nets connecting the modules

are connected at the center of each module for simplicity hence. it can be concluded that an

optimum interconnection is achieved if the two modules are adjacent. A sub-optimum placement

can be achieved by placing the modules. so that they have a common corner. If they are aligned.

but have another module in between them, the placement is even worse. Following this model, a

computation window can be created. as shown in Fig. 1. The module for which the goodness of

placement is to be evaluated is located in the center of the window. The interconnections with the

nearest directly adjacent modules are assigned il weight of 100%. The interconnections to modules

with a common comer are assigned a weight of ~WO. which corresponds roughly to the additional

3

wire length. The assignment of weights to modules at different relative positions with a given

module at the center of a window is done for at most 24 connected modules. If the center module

has more than 24 C O M ~ C ~ ~ O ~ ~ S . they are ignored. (In special cases. it might be appropriate to expand

or reduce the window Size. Also if the x and y dimensions of the modules are Signiscantly

Uerent. the window weights in the different directions may be Merently assigned.)

For a module j , the theoretically optimal placement value T (j) can be &mputcd by placing the

first four modules with highest connectivity with j in the positions with 1,OoQo weights. the next

four ones in the positions with 7096 weights. and so on until no more modules are to be connected,

or the maximum of 24 modules is reached. It has to be stnssed. that T (j) is a theoretical

optimum value for placement of a module relative to other modules. In practice. it might not be

possible to achieve this phxment. cg., modules that happen to be placed at the edges of the chip

only have three adjacent neighbors and optimality requirements for dserent modules are likely to

collide. However, the values of T (j provide a means of evaluating the tanks of the modules in

terms of their possible placement values and also suve as a means to evaluate the current place

ment.

Using the window. the real placement value R (j cf a module j can be computed
t

by Over-

laying it over the module and evaluating the connectivities to its 24 neighbors (or less at edges) and

summing up the products of each connectivity and associated weights.

The placement values for the whole set are computed by Summing up all individual values and

dividing them by the number of modules N. The gdness of a module j currently at a specidc

' (j * 10096. The theoretical values T (j can be precomputed as place can be computed simply as

they are specific to the module set and ConnectPrity. but r?ot to the placement itself. while the real

values R (j 1 are computed for each placement.

m

Since a means of evaluating and comparing a placement has been established. we now describe the

design of an algorithm for module placement as shown in the block-diagram in Fig. 2. The aigo-

rithm tries to maximize the placement value for each module: this is equivalent to minimize the

4

wire length. The blocks will subsequently be d d b e d in detail:

INIT The variables. arrays and window are initialized. The user is prompted for two

procesls parameters. An input file containing a connectivity matrix of the modules

to be placed is read. The precomputations of the theoretically optimum placement

values T (j for each module j and the whole assembly are performed.

P U C E An initial placement is performed. Since the algorithm does not depend on its

quality, the modules are simply assigned to free spaces in order of occurrence.

- loop :

MUTATE

EVALUATE

JUDGE

SORT

ALLOCATE

The placement is mutated with the probabilities the user has entered. This is done

by pairwise exchange of randomly selected modules.

The placement is evaluated by overlaying the window over each module and com-

puting its placement value. The total placement value is computed.

The decision regarding whether a module is to be newly allocated is performed by

comparing the normahzed ' placement value with a random value of linear distribu-

tions. This placement value is equivalent to the survival chance of the module at

its present location.

The set of modGlcs to be newly placed are sorted in order of maximum COM~X-

tivity. Modules that are in the beginning of the sorted sequence will be placed

before others that appear later in the sequence.

All modules schedaled for placement are removed from their old positions. The

bst module is taken from the sorted sequence and tentatively placed at all avail-

able positions until the best placement is found. This is repeated for all remaining

modules to be placed.

I/O The best placement so far obtained is saved and. in case of an update, the user is

informed. If desired, the current total placement value is displayed.

- the loop is exited after a specs& placement value, CPU time or number of steps are exceeded.

Two UScr-specSed constants determine the probability of mutation and the percentage of modules

to be exchanged. Simulations have shown that the optimal values of those constants vary among

Merent input data sets. However, the values can be determined in a few test runs. Afso. if

default values are uscd. the h a l d t will not be worse than a few percent of what could be

achieved by h e t u n i n g the constants.

IIL SIMULATlON RESULTS

Perhaps the most startling fact about the new concept is its fast convergence. An example with 49

modules where a known looQa solution exists was found to converge within 500 iterations to the

optimum solution which required approximately 10 seconds of CPU time when implemented in

PASCAL running under 4.2 UNIX on a GOULD 9050 computer. The graph depicting the best value

so far of the normatized placement ratio RIT (averaged over all modules) v ~ m s the number of

iterations is shown in Fig. 3a. Fig. 3b shows the currently computed normalized value R /T VQSUS

the iteration number. (Due to factors mentioned earlier. the actually computed value is only 98.1%

although a placement check yields that the optimal solution has in fact been found).

In ordv to evaluate the algorithm's performance we made up several input data sets. The hi%

category had numbers of modules ranging from 16 to 49 and known 1009'0 solutions. The algorithm

achieved optimal placements in all cascs within the * 500 iterations when appropriate constants

were provided.

The second class of input data sets were generated by a special random generator which produced

data sets with the following characteristics: The connectivity among the modules was not uniform.

and there were clusters of modules with higher internal than external connectivity. As the input

data was randomly generated. a 10090 placement possibility was highly unlikely. From some

6

approximate probabilistic calculations. we estimated the lower . bounds of optimality to range

between 5Wo and 7Wo of the theoretical optimum. The actual values are strongly dependent upon

the total number of modules. In the case of 49 modules. the lower bound is about 5Wo. and the

algorithm achieves about 7Wo. Although no upper bound can be given. it can be confidently

assumed that a near-optirnum placement has been found. as the clusters can be easily recognized in

the computed placement (see Fig. 4). The Merent shapes around the module numbers refiect their

affiliations to different clusters.

IV. CONCLUSIONS

The proposed concept has been shown to be extremely fast. simple to understand. easy to use and

extremely efficient. It has been demonstrated in an application for the placement of equally-sized

square modules. However. the concept itself is not restricted in any way to this application. On

the contrary, it is so generally useful that it is suitable for many other applications in VLSI-design

such as placement of arbitrarily sized modules. routing problems and the like. Moreover. applica-

tions can be found in nearly a l l areas of engineering where dcient heuristics are required.

We plan to perform the following enhancements in the future:

- operation on net-list input data rather than connectivity data

- enhanced variety of features like ability to place arbitrarily sized modules

- a parallel version of the algorithm (note the strong inherent parallelism of the proposed concept).

REFERENCES

[l]

[2]

E31

[41

M. Hanan and J. M. Kurtzberg, “Placement Techniques,” in Design Automation of Digital
Systems: Theory and Techniques. ed.. M. A. Breuer. Prentice-Hall. pp. 213-282.1972.
M. A. Breuer, “Min-cut Placement,” J w . hesign Aufomatkm and Fa& Tolerant Computing.

S. Kirkpatrick. C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing.” Sci-
ence. vol. 220, pp. 671680, May 1983.
C. Sechen and A. S. Vincentelli. “The Timberwolf Placement and Routing Package.” Roc.
Custom Integrctted Circrdts C h f . . pp. 522-527. May 1984.

V O ~ . 1, pp. 343-382, Oct. 1977.

a

. I

.2

. 5

. 2

1

. 2

.7

1

.7

. 2

05

1

. 5

. 2

.7

1

.7

. 2

. I

. 2

. 5

.2

Fig. 1 : Evaluation window

1

lNlT

I 1

EVALUATE
I

w

PLACE

e7 JUDGE

SORT I
ALLOCATE

Fig.2 : Algorithm outline

1

-

59 ---

-

4a
I

I l l 1
I

I I I I I l l i l l I l l 1

D 21 JI 4 a 591 IP

Fig.3a : Normalized best placement value versus interation number

4a I l l 1 1 1 1 1 1 1 1 (1 ' 1 1 , 1 I I l l l l

0
I

20s 2 a 4Q 139 199

Fig.3b : Normalized current placement value versus iteration number

@ 31

1131

32 38 27

1191 39 37 29 28

36 30 33

35 34

Fig.4 : Computed near-optimal placement

